Section 16.5: Curl and Divergence

What We'll Learn In Section 16.5

- 1. The Del Operator
- 2. Gradient, Curl, and Divergence (general)
- 3. Curl / Results About Curl
- 4. Divergence / Results About Divergence
- 5. Updated Green's Theorem Notation

1. The Del Operator

- An operator is a function whose inputs are functions and whose outputs are functions.
- The most common one is the derivative operator $\frac{d}{dx}$, but there are many others. (Examples on board)
- Operators don't really make sense on their own. They are just objects waiting around for you to give them a function, then the operator will "act" on the function and transform it into another function.
- When an operator acts on a function, the notation we use will look like multiplication, but it's not.
- Operators should always be written on the left of the function that it is acting on.

1. The Del Operator

The <u>del operator</u>, notation ∇ , is the vector with the operators $\frac{\partial}{\partial x}$, $\frac{\partial}{\partial y}$, and $\frac{\partial}{\partial z}$ in it in that order.

$$\nabla \equiv <\frac{\partial}{\partial x}, \ \frac{\partial}{\partial y}, \ \frac{\partial}{\partial z} >$$

- On it's own, it doesn't mean much. But... it makes sense when you combine it with a scalar (function) or another vector (field).
- 3 ways of multiplying with vectors...

3. Curl / Results About Curl <u>Ex 1</u>: If $\vec{F} = \langle xz, xyz, -y^2 \rangle$, find curl \vec{F} .

3. Curl / Results About Curl

Image: Image:

If f is a function of three variables that has continuous second-order partial derivatives, then

$$\mathrm{curl}\,(
abla f)=\mathbf{0}$$

Proof?

<u>Note</u>: This gives us a way to show that a 3-component vector field is NOT conservative.

3. Curl / Results About Curl

<u>Ex 2</u>: Show that the vector field $\vec{F} = \langle xz, xyz, -y^2 \rangle$ is not conservative.

3. Curl / Results About Curl <u>Recall</u>: Results from section 16.2...

5 Theorem

If $\mathbf{F}(x, y) = P(x, y) \mathbf{i} + Q(x, y) \mathbf{j}$ is a conservative vector field, where P and Qhave continuous first-order partial derivatives on a domain D, then throughout D we have $\partial P \quad \partial Q$

Theorem

Let $\mathbf{F} = P \mathbf{i} + Q \mathbf{j}$ be a vector field on an open simply-connected region D. Suppose that P and Q have continuous first-order partial derivatives and

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$
 throughout D

Then **F** is conservative.

3. Curl / Results About Curl For 3-component vector fields, we now have...

Theorem

If f is a function of three variables that has continuous second-order partial derivatives, then

$$\mathrm{curl}\,(
abla f)=\mathbf{0}$$

Theorem

If \mathbf{F} is a vector field defined on all of \mathbb{R}^3 whose component functions have continuous partial derivatives and curl $\mathbf{F} = 0$, then \mathbf{F} is a conservative vector field.

3. Curl / Results About Curl

<u>Ex 3</u>:

- a) Show that $\vec{F} = \langle y^2 z^3, 2xyz^3, 3xy^2 z^2 \rangle$ is a conservative vector field.
- b) Find a function f such that $\vec{F} = \nabla f$.

3. Curl / Results About Curl <u>Why the name Curl?</u>

4. Divergence / Results About Divergence <u>Ex 4</u>: If $\vec{F} = \langle xz, xyz, -y^2 \rangle$, find div \vec{F} . If $\mathbf{F} = P \mathbf{i} + Q \mathbf{j} + R \mathbf{k}$ is a vector field on \mathbb{R}^3 and P, Q, and R

have continuous second-order partial derivatives, then

4. Divergence / Results About Divergence

<u>Ex 5</u>: Show that the vector field $\vec{F} = \langle xz, xyz, -y^2 \rangle$ can't be written as the curl of another vector field, that is, $\vec{F} \neq curl \vec{G}$.

5. Updated Green's Theorem Notation

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \oint_C P \ dx + Q \ dy = \iint_D \left(rac{\partial Q}{\partial x} - rac{\partial P}{\partial y}
ight) dA$$

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_D \left(\operatorname{curl} \mathbf{F} \right) \cdot \mathbf{k} \ dA$$

$$\oint_{C} \mathbf{F} \cdot \mathbf{n} \ ds = \iint_{D} \operatorname{div} \mathbf{F} \left(x, y
ight) \ dA$$

5. Updated Green's Theorem Notation

$$\oint_C \mathbf{F} \cdot \mathbf{n} \ ds = \iint_D \operatorname{div} \mathbf{F}(x, y) \ dA$$

